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1. Deep Learning Basic
1.1.  Neural Networks

Neural Networkset AIZ 02l =2 2 HE ol Zot)| fIol Z=EH st SHE
=00 MN M2 X F&0| HE 2 ANSE BU= &gA S 2 86T} Neural Networks=
ofLEel 212 l0I0], otLtel =2 ¢l0I0f O2l10 oLt 0lA2 Bl E oI IF =& galoZ
HZ L UL Ol H 4 & neural networks= S & MHCS SESH S HE HZEE =
RUCt. Neural Networks= Z &1 HIOIEH 0l 2/ &6t &&dtD A2H0l KILIB M JGMESZ
e T E LU0l ESHTL.

Input Layer, Hidden Layer

Output Layer

________

________

C Sl R

/—-----------\

[22& 1] Neural Network



1.2. Perceptron

Perceptron2 S 2121JIE ClXIGt= =& [Perception]t ¢S E 20t =0 EE2E
b ':*oP7 bs| EI ot= [Neuron]9_| g40{0ICH = perceptronOIQ MESIA 5ed0| ZAEBEE

% & 0| Ct. perceptron2 & & gk (input) 1t
It S Xl (weight)E EtOt activation function@ 2 H&tet & ESE g2 WEHCE IS X0t 2
U2 =Yg Z2Hol= ol S0l A= 0| S CH E 8 perceptron?] & gt2
0l&£=0/22 0 L= 10/ L. ZJ.EH/H perceptron0| HZ & == U= IHE 2tEHE 2 M=

= 2 0] 01 activation function2| =& 6t perceptron E&gi0| £ 2 2 =X &
ESALCE HEOIH BEHS %%!Ud—ﬁ\- 2te| 2HHE OlalatD] |8t 3l X & o Z 0l
Jts 6Lt

~— SUM OF WEIGHTS

OUTPUT

ACTIVATION FUNCTION

INPUTS AND WEIGHTS

[O& 2] Perceptron2 4 @A
1.3. Activation Function

activation function2 perceptron2| =& 20| H neural networkE i & 6t= AtE 0|
AMBLO =S 8401 EH 2= &5 S OLXI 2 SHAH0 U} = activation
function2 & Ml neural network| £ g2 Z2&ot)| 120 IS SR & 20IE ==L,

S o ! = = «—
gefdoZ olZolds 2He At 82 th=8t HIEOI OtLID| HEO0l CIOIEISE
CIXIR Z22H0A 2 &5 BIdE X0 D52 E0E 210/CH O J1 0l activation function2
&5l 012 LA = MAECL O HIEE A S8 2 J'(-IE'J%F 2= QU ol Y& S ol

= — == j—
& ==0l|Ct.

>U F-II]

—

Sigmoid | Leak%l Ii'(eLU il
o(z) = —1+i_1 ‘ max(0.1z, z)
tanh | Maxout
tanh(z) ° | N max(w!z + by, wlz + by)
RelLU ELU
max(0, x) {x x>0
= . ale®=1) <0 - - o

[Z1& 3] Activation Function2| &



1.4. Supervised Learning

Machine Learning2| st& & H 8 =l supervised learning 2t non-supervised learning® £
L= Ct. Supervised LearningO| 8t 0|0 & 6tI1 & & Chd StHCY.

Supervised Learning2 UIOIHE &0t HLI ZHE E&0tH M=ot g0el&2
=& ot)| ?Ioll dl0l=0l XI & E data setE% SO S5Z202 40 E2HEH =4
GIOIE 2l 20l 2£0t0F ot 1) =& OO0l & Jt & & d(generalization)S 21 A O OF 8Lk
Supervised Learning2 O|0I Xl JHXl 21 &l OIS 224, 028 28 24, AW 2 X 52 200l
EEEHD AKX EFH 202 superwsed learning modelS H & ot H 4ot EF
=T MEXA0 ELQE £ A1 datasetll R SotA 22 2 HoH 212 &0|
&R &5E =40l =201 supervised learning model2 W E6t=0 2 Al2H0] A=

=& UCH L8t non-supervised learning0ll Al = Jt= Gt Xl 8t supervised learning

modell M= HIOIHE ARME2Z SHAHYGHHL 2F It 8iL.

—ITre T
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2. Gradient Vanishing

2.1. Supervised Learning 2 112|S
@51 BE =Cof Yolo] AEHE £

(2HE2) Z=atat o 4t ALOI2] OIS ALl Sy

(@Hg3) o2 Z 7ISX| 2 0290 7|27| & &

(@H84) ALt 712712 71E 7127|0A i 7S X E H0|E o

[Z1& 4] Supervised Learning2| & 12|
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Neural NetworkOfl Al = O & perceptron Z20| Ct3 perceptron2| &2 30] & O
b= X2l &t activation function2| Z 0tgt0| HIERIIE et HE OIFHAIH [2E 4]2

(2tE1) ol M= OtXI 2 perceptron2| activation function2| 2 1tgt0| = XIJt &l =0l Ol
SHAHNAN=E RPHAZ IISXE 20ot2=2 01| Xz B0z 8= g0l OtLIE =2

(U E2)0 A= 0l =Xt activation function2] Z 1082l 04 E Hl&totH (U EI)M M=
HeHE zlAst2 2t2lok)| f16H0 Loss Function@ 2 0fl21E 2t2lotH S0 JIIEXE
LA HFEO O Jel= 0120 2 IIESXS0l HEE &M NEUAL JISI=
JI2J12 ety ao 2 stot= A0l oflefel 8t2 %‘ﬁ/\l?l‘— gEHUS & = AL =
SMel JI=SJe Bt S Z JISXIE OIESPDJ XA 0Hd= 2A6HH Lt %*EPE
IISX= L0t 2 g e PﬁiE FZHMOtUA=0 e gt= Olsot
Qole] HiefItH HE == UL HES 2 AEdI JI27]2 BHiHY e 2 Z6H0
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2.2. Gradient Vanishing
2.21.  Gradient Vanishing2| 2| 0|

geld SO0 ol E 20l 22X 2514 850l &2 X &2 It A=d O
312 (UHE4)HA (UF2)Z TS0t IISXE SHOIESH=E UHES
back-propagationO|2t) 6t1) 231 B H & == gradient)t 0 &0t Xl= & & = gradient

vanishingOl ct 1) &tC}.

2.2.2.  Gradient Vanishing2| & 2!
2.2.21.  sigmoid &=

1
sigmoid(x /
-2 -1 0

-5 sigmoid(x)2| =g -3

[21& 5] sigmoid & == 2t sigmoid2| &&=

sigmoid(x) = - 17,{
+e

1 e 1+e =1

d . , d —xy
—sigmoid(x) =—(1 +e ") = =
dx dx are™ e

=1 _ ! - = 1,,( 1 - 1,x) = sigmoid(x)(1 — sigmoid(x))
1+e (1+efx) 1+ 1+e
sigmoid &f = B = A AES 0BU 1B H2 0|2 Jtsdt =2 HEltot=
SAE JHXIH sigmoid =2 202 & & SEH0II| =20 Z2UHE HEZ AL [
HZotH Relotlh. sigmoid &= St 00l JHZ A H&&tL. L8 sigmoid2
Ser2 xSt 2 0.2521 0l back-propagationOl M sigmoid & ==2| 0| =280l H&S
Sofl XIH == S0 D0 & =5 gradient vanishingO| 282 &= S0l 8 C}.
2222. tanh &=
tanh(x)2| =2
4 -3 -2 -1 1 2
tanh(x)
-1
[ 6] tanh& =2 tanh2 E&t=
tanh(x) = =—=



—X X =X 2 X =X 2
Ltanh(x) — d {ex—e_x — (e +e ) —(e z—e )
dx dx \ e +e (ex_l_e—x)

X X
e —e

X —x 2
=1—(e_e ) =1—tanh2(x)

back-propagation 2 & 0l M sigmoid &2 0| X0t = S50 sUHEOIX EE
StHE S HLGHI| ?IoH tanhE ALESHH B A =0l tanh&f == SE0] [1,+1]2 HRE
AT = =20 HROF 280 UL tanhl Q) =& 40| £ 10| Ch. sigmoid 2
CE2 Ul WotH =G0l 480D XH0lLte A2 & = QUCH S0 % x2401 2Lt
ZOA Ol et 2122101 AAH HOLKI 22 sigmoid 2 Ct= 23 6t K| 2F gradient vanishing2
g = gith

3. Overfitting

3.1. Bias2 Variance

bias= i RE2 Soll 22 oSt X e X012 H 2 LIEFHCTE.
bias)t =2 102 =gt gt 2t2 Xt0IJF ACt] & % ALt 8tH variance=
Ct2F st Ol 0l B = (data set)l CHaHO 20 o3 Bate = UA=K0fl CHEE 22
| CHet 2J0l2 & A& 3 variance 2

=
HE0I0 oy 20| 282 RIsS

e 202t 20l OI=gt0l Z0tLt M UNM CHotH 282 &= Y=l & = UL

High Variance

[21& 7] Bias 2t Variance

High Bias

<

bias® variancel 310 S0 et 40HK 2L 2F6t0 €Y 2E0|
2432, ¥ U0IHY |/Xls =20/t HS M IHE MHest 222
X

Y 280 2Z 50 A= Low Bias & Low VarianceO| C}.



3.2. Overfitting 1t

0

H .
ue i

ron
mo kJ |
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1. Batch Normalization &~
1.1. Data Normalization

[ —

normalizationZ ol OlmeE &= o &2l ot $I ol M & = local optimumOfl Bt Xl =
ZHE oHZotD| R AFZSSHCH [OE 9)0lM = xeis &= i AHEE JMELZ
OloH ot XI 2ot global optimum= & Xl 20t local optimum0il 01 =2l A A = Ct. O] [H
normalizationS S off local optimum0il #it& Jts&8S RFH = = UL

’ Normalization
Local Optimum Local Optimum

[1 & 9] Data Normalization

1.2. Batch Normalization
1.2.1. Batch

[O1& 4]0l M gradientE S OI0IE GtD| ?Ioi 2 £ training dataS ALESHH & Ch. 01 &
galCz= HEH2 HIOIHE StHW H2laotXl 267 tHZ0l G0l e £ batch &< 2
S0 sf& 2 ot 2401 LEHE 0| CY.

‘_

1.2.2. Batch Normalization

batch normalization2 &
batch'jdi “"F‘W =

I =2 = X et
||3

SIS UME A 2 batch &9 22 s 2L E IXHSHE 2
Ol=oll & st ot= 24 L &Lt batch &HRILE E1IO|O101| (et
P &1 3tE Soll zero mean gaussian(Z #=0, E=EXt=1) SEH 2

rl:l HO

-—

ﬂJlﬂ _IEE

20| OtLIct batch&E 2

batch normalization 21} 2 F% ol gE M2 &=
o r s 2 Qg2 DPIIE-IE}
[

Hi&koll OF 2101 I UL &l 01 O It
IFSXIt 2= et H 2806
HXIH 2 batchS0| 2& 7 =X2 2 SEf= B
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2. Batch NormalizationE &gt Overfitting off &

batch normalizationdms 2 222 SUH2= Y& HIOIE 222 25 HAS6IH 2
layer2| featureJ)t S & & scale0l 2 = UL, 2L 0 XH HNatst L2 HEE

U= =S AL

£ 8t, neural network 0l M 2+ activation function2|
HE ZoHXID W20l St g0l € L. sigmoid
MG Sl=0 OlEH &XH JFE X2 LA O0lED
20 ==stoll & THotAH & C 0l = ai Zot2]

ack-propagation 2t & = 0| A
gradient vanishing & Xl 2t
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BHOZ HHXIE H3tE &6
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3. Batch Normalization &
3.1.

)
J
fr O

2 — _ 2
Obatch = mZ(xi Hpatch )
=1

Xi — Hpatch

Xi
2
A Obatch te

Batch Gf|O|E{ 2 scalelt shiftS 38 QIGH|0|E Yi <« ¥%i + f = BNy p(x;)

[1E& 11] Batch Normalization € 112|&(y = scale, B = shift)

normalization O| = batch Ol 0| E{ =& scale(y)2t shift(B)S BtH St ME2 gt 2 B Al
Tl =0l Hl0lH E A= normalizationdt= & = H X H activation functionl| H| & & A& S
AN Tl= SHIOF &AM ST



1. Batch Normalization & 1) 2| &= python 2 &2
=

import numpy as np

batchnorm forward(x, gamma, beta, eps):

sample mean = 1./N * np.sum(x, axis =

Xx_centered = x - sample mean

sq = X _centered ** 2

var = 1./N * np.sum(sq, axis = 0)

stddev = np.sqgrt(var + eps)

rstddev = 1./stddev

X _centered * rstddev

gamma * x norm




out = gammax + beta

cache = (x_norm,gamma,x centered,rstddev,stddev,var, eps)

return out, cache

2. 78 UE &Y

batch normalization JHE 0] X & & HE & =2 (loffe & Szegedy, 2015, #) & 2| =5t X
=4l EZ Python A0 2 &2 UL

2t DC etolof tHstst 892 ZE0IoHAH

batchnorm forward(x, gamma, beta, eps):

2l & gt x= training data set0| 11, gammas B8 &8 & S48 2 2 =06t)| 2 & scaling &,
beta= biasZ & = ot = shift at, eps= HA&E [ 022 LtH XI= 2 Nl (divided by 0)Jt
2ol AE W RAol =X & AF LS BHGHI| ?IE Ob=F &2 == A+8LO0I L.

sample mean = 1./N * np.sum(x, axis

Xx_centered = x - sample mean
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1. 2&

1 o Z M2 Z batch
ULH Eeld 28 g =
DolZHE T2 4L HAHZ
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2 HF0 M= Eeld &5 Al overfitting ZHE 246t
normallzatlonOH et =8 =AES pythonoé T2
1ot Al oll ot

o

o
TEGI0 2

2. N

=2 AU A= &&SH 2l batch normalizationtl CHoH A G D23 A XICH A X HIAEE
aist =2 H 2l batch normalization2] 2 122 &§&5HAH A= FAIGIEZ =5
FIOHEOl 2 HAES 2 Soll 4ot A 8tC.

OtAtE=2l, OF. (2020). & eld A OIOIE AT A AlCIE 52). RITISA.

ﬂlIO
@
oln
—\
10
E

et&&Hl, 6. 2.(2023). et&etE Eclid FRE HIE HtALM, stE& A H| 2f 6.

[t

https://wikidocs.net/book/6651

loffe, S., & Szegedy, C. (2015, 7). Batch Normalization: Accelerating Deep Network Training
b y Reducing Internal Covariate Shift. International conference on machine learning,

448-456. https://doi.org/10.48550/arXiv.1502.03167



